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Abstract. The generalized Heitler-London (GHL) theory provides a straightforward way to express the
potential energy surface of H3 in terms of Coulomb and exchange energies which can be calculated either
by perturbation theory or using the surface integral method (SIM). By applying the Rayleigh-Schrödinger
perturbation theory, GHL theory for the quartet spin state of H3 is shown to yield results equivalent to
the symmetrized Rayleigh-Schrödinger version of symmetry adapted perturbation theory (SAPT). This
equivalence allows a comparison with the corresponding results obtained by the surface integral method.
The surface integral result calculated with a product of atomic wave functions is found to have certain
advantages over the perturbation approach.

PACS. 34.20.Cf Interatomic potentials and forces – 31.10.+z Theory of electronic structure, electronic
transitions, and chemical binding – 31.15.Md Perturbation theory

1 Introduction

The generalized Heitler-London (GHL) theory provides a
useful framework to calculate the potential energy surfaces
for polyatomic systems [1–4]. Since the potential energy is
expressed in terms of Coulomb and exchange energies it is
possible to systematically separate out many-body effects
in every single term contributing to the potential energy.
In this paper some aspects of the three-body exchange
effects occurring in H3 are examined in more detail.

Axilrod, Teller and Muto [5,6] were the first to sug-
gest a formula describing the leading long range three-
body dispersion term for three spherically symmetric
atoms. Since then the non-additive effects have been inten-
sively studied and several review articles have been pub-
lished [7–9]. In the GHL approach the potentials can be
decomposed into Coulomb and exchange energies, whereas
in symmetry adapted perturbation theory (SAPT) these
interactions are expressed in terms of Coulomb and ex-
change integrals in the manner first introduced by Heitler
and London. Recently, SAPT was formulated for the in-
teractions of trimers [10] and has been applied to numeri-
cal calculations up to third order for the quartet spin state
of H3 [11] and for the helium-trimer [12]. Other three-body
calculations for H3 are based on Heitler-London type cal-
culations [13] and perturbation calculations making use
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of Unsöld approximations [14]. In the former the splitting
into Coulomb and exchange part is, as pointed out by the
author himself, not completely rigorous.

In a previous paper [3] analytical results were reported
for the doublet as well as for the quartet spin state for the
H3 system based on the GHL theory. Two kinds of ex-
change energies appear: cyclic exchange energies, where
all three electrons are involved, and two-body exchange
energies in the presence of the respective third atom. The
cyclic exchange energy of three hydrogen and three he-
lium atoms [15] was calculated using the surface integral
method (SIM) which previously has been applied to two
atoms [1,2,4,16–18]. In a forthcoming paper [19] it will be
demonstrated that all exchange energies occurring in the
H3-system can be calculated either by the surface integral
method or by using perturbation theory, and the corre-
sponding results for the implicit three-body effect on the
two-body exchange energies will be derived and compared.

For H2 it was previously shown that SAPT and GHL
are equivalent [20]. The purpose of this paper is to com-
pare the surface integral method calculations of the three-
body effects in the exchange energies based on an atomic
product wave function with the results of first to third or-
der of SAPT which are only available for the quartet spin
state of H3 [11]. In order to perform this comparison it is
necessary to first prove that the SAPT and GHL theory
expressions for the energy of the quartet state are equiv-
alent. The numerical results reveal that with the zeroth
order wave function the surface integral result contains
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parts of the second order SAPT result and is therefore
more efficient.

In Sections 2 and 3 the basic ideas of the GHL the-
ory and polarization approximation are described. In Sec-
tion 4 the equivalence of the GHL and the symmetrized
Rayleigh-Schrödinger (SRS) theories is demonstrated or-
der by order. The latter is designated a weak symme-
try forcing SAPT. Section 5 reviews the surface integral
method (SIM). Thereafter in Section 6 the advantages of
SIM over the perturbation approach will be demonstrated
by comparing the numerical results of perturbation theory
and SIM.

2 Generalized Heitler-London theory for H3

The application of generalized Heitler-London theory
to H3 was previously discussed in reference [3]. The gen-
eralized Heitler-London theory is based on the following
equation which has to be solved:

ĤF =
∑
g

εgT̂ (g)F. (1)

Here F denotes the localized wave function, i.e. each elec-
tron is associated with only one nucleus such that the wave
function is non-symmetrized, T̂ (g) designates a permuta-
tion operator for the electron coordinates, and εg stands
for the Coulomb (g = I) and exchange energies (g 6= I).
In the next section it will be shown how the function F
can be chosen. Applying results from the theory of the
symmetric group, correctly symmetrized wave functions
can be projected out of the localized wave function and
approximations to the eigenenergies of the Hamiltonian
in terms of Coulomb and exchange energies are obtained
where the quality of the approximation depends on how
much the localized wave function chosen differs from an
ideal localized one which is a linear combination of exact
eigenfunctions (see Ref. [3] for details). The calculation
of the Coulomb and exchange energies is the main part of
the theory and the details for the H3-system are explained
in this paper.

In terms of Coulomb and exchange energies the two
doublet states of H3 take the form

1/2EGHL = εI − ε123

±
√

1
2

[(ε12 − ε23)2 + (ε23 − ε13)2 + (ε13 − ε12)2] (2)

and the quartet state

3/2EGHL = εI − ε12 − ε23 − ε13 + 2ε123. (3)

The remainder of this paper will be concerned only with
the quartet state.

3 Polarization approximation and generalized
Heitler-London (GHL) theory

The Born-Oppenheimer non-relativistic Hamiltonian of
the three-body system is given by

Ĥ = Ĥ0 + V̂ (4)

using

Ĥ0 = Ĥ0
A + Ĥ0

B + Ĥ0
C (5)

V̂ = V̂AB + V̂BC + V̂AC (6)

where Ĥ0
A, Ĥ

0
B and Ĥ0

C are the Hamiltonians of three free
hydrogen atoms and V̂AB, V̂BC and V̂AC describe the in-
teraction between atoms A and B, B and C, as well as A
and C, respectively. The polarization approximation [21]
is based on the equation

Ĥχp = Epχp (7)

where the polarization wave function χp and the polariza-
tion energy Ep can be written as perturbation series

χp =
∑
n

φn, (8)

Ep =
∑
n

εn. (9)

The zeroth order polarization wave function φ0 is the
eigenfunction of the free Hamiltonian Ĥ0 and thus is a
product of three free hydrogen wave functions. Starting
from the GHL equation with F chosen as the polarization
wave function χp, equation (1) together with the Hamil-
tonian equation (4) can be written as

(Ĥ0 + V̂ )|
∑
n=0

φn〉 =
∑
g

εgT̂ (g)|
∑
n=0

φn〉· (10)

Forming scalar products with T̂ (g)φ0 for each group ele-
ment g

(T̂ (g)φ0, (Ĥ0 + V̂ )
∑
n=0

φn) =∑
g′

εg′(T̂ (g)φ0,
∑
n=0

T̂ (g′)φn) (11)

a system of linear equations can be derived for the
Coulomb energy εI as well as for the exchange energies
εg (g 6= I) in terms of Coulomb integrals J , exchange
integrals Kg, and overlap integrals Sg. The following no-
tation for the overlap, Coulomb and exchange integrals is
used:

Sg :=
∑
n=0

Sng (12)

J :=
∑
n=0

Jn (13)

Kg :=
∑
n=0

Kn
g , (14)
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where

Sng := (T̂ (g)φ0, φn) (15)

Jn := (φ0, V̂ φn−1) (16)
J0 = E0 (17)

Kn
g := (φ0, V̂ T̂ (g−1)φn−1). (18)

The equalities Sng−1 = Sng and Kn
g−1 = Kn

g hold. Using
these definitions equation (11) becomes

E0 + J = εI +
∑
g′ 6=I εg′Sg′−1 : g = I

E0Sg +Kg = εg +
∑
g′ 6=g εg′Sg′−1g: g 6= I.

(19)

These equations can be solved for the Coulomb and ex-
change energies εI and εg, g 6= I. The results are given
in the Appendix. In practice, the perturbation series will
only be taken to a finite order M , and the Coulomb and
exchange energies are approximated by equations (A.1–
A.3) where all overlap, Coulomb and exchange integrals
are only calculated up to order M .

To find on the other hand the mth order contribution
to the Coulomb and exchange energies one starts from
equations (A.1–A.3) as given in the Appendix and pro-
ceeds in the following way: the Coulomb and exchange
energies are sums over contributions of all orders, i.e.
εg =

∑
n=0 ε

n
g . The first step is to multiply both sides

of the results (A.1–A.3) by the denominator N , which is
also a sum over terms of all orders. Now both hand sides
can be rearranged into groups of terms of the same per-
turbative order. These groups on both hand sides are then
equated, and the group of mth order can be solved for εmg .

The convergence properties of the polarization theory
have been extensively discussed for the case of two hy-
drogen atoms [22]. For low orders it was shown that the
perturbation series rapidly converges to the Coulomb en-
ergy [20,22–24] though this is not the limit for the infinite
order expansion. It is assumed that the behavior of this
perturbation theory for a system of two atoms also roughly
holds in the case of three atoms [10,11]. We want to em-
phasize that this is not a rigorously proven statement but
it is shown below to give quite accurate results. Since here
we are only interested in low orders, especially the first,
the expected behavior justifies approximating the local-
ized wave function via the polarization approximation for
three hydrogen atoms as well.

4 Equivalence of the GHL and SRS theory
for quartet H3

In this section the order-by-order equivalence of the com-
plete energy expressions obtained by using either the GHL
or the SRS theory will be demonstrated. Both the GHL
and SRS theories start with the Hamiltonian equation (4)
and a zeroth order wave function which is a product of
three free hydrogen atom wave functions. To demonstrate
the equivalence of the first order expressions the first or-
der SRS term will be expressed in terms of Coulomb and

exchange energies. In equation (12) of reference [11] this
term is given by

3/2E1
SRS = N−1

0 [〈ψ0|V̂ (1− T̂ (12)− T̂ (23)

− T̂ (13) + T̂ (123) + T̂ (132))|ψ0〉], (20)

which can be expressed with equations (15–18) as

3/2E1
SRS = N−1

0

[
J1 −K1

12 −K1
23 −K1

13 +K1
123 +K1

132

]
,

(21)

where

N0 = 1− S0
12 − S0

23 − S0
13 + S0

123 + S0
132. (22)

Using equation (19) and the identity ε0I = E0 it is possible
to express the first order contributions as

J1 = ε1I + ε112S
0
12 + ε123S

0
23

+ ε113S
0
13 + ε1123S

0
123 + ε1132S

0
123 (23)

K1
12 = ε112 + ε1IS

0
12 + ε123S

0
123

+ ε113S
0
123 + ε1123S

0
23 + ε1132S

0
13 (24)

K1
23 = ε123 + ε1IS

0
23 + ε112S

0
123

+ ε113S
0
123 + ε1123S

0
13 + ε1132S

0
12 (25)

K1
13 = ε113 + ε1IS

0
13 + ε112S

0
123

+ ε123S
0
123 + ε1123S

0
12 + ε1132S

0
23 (26)

K1
123 = ε1123 + ε1IS

0
123 + ε112S

0
23

+ ε123S
0
13 + ε113S

0
12 + ε1132S

0
123 (27)

K1
132 = ε1132 + ε1IS

0
123 + ε112S

0
13

+ ε123S
0
12 + ε113S

0
23 + ε1123S

0
123. (28)

On inserting into equation (21) many terms cancel and
equation (21) is equivalent to the first order contribution
to equation (3)

3/2E1
SRS = N−1

0

[
J1 −K1

12 −K1
23 −K1

13 +K1
123 +K1

132

]
= ε1I − ε112 − ε123 − ε113 + ε1123 + ε1132 = 3/2E1

GHL.

(29)

The rest of the proof will be done by complete induction.
The claim of the induction is the equivalence of the GHL
and SRS energy expressions up to nth order. From equa-
tion (12) of [11] the general nth-order expression for the
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interaction energy in SRS theory is found to be

3/2EnSRS = N−1
0

[
〈ψ0|V̂ (1− T̂ (12)− T̂ (23)

−T̂ (13) + T̂ (123) + T̂ (132))|ψ(n−1)
pol 〉

−
n−1∑
k=1

3/2EkSRS〈ψ0|(1− T̂ (12)− T̂ (23)

−T̂ (13) + T̂ (123) + T̂ (132))|ψ(n−k)
pol 〉

]
= N−1

0 [Jn −Kn
12 −Kn

23 −Kn
13 +Kn

123

+Kn
132 −

n−1∑
k=1

3/2EkSRS(−Sn−k12

−Sn−k23 − Sn−k13 + Sn−k123 + Sn−k132 )
]

(30)

where N0 is given by equation (22). Thus it is necessary
to prove that

3/2EnGHL = εnI − εn12 − εn23 − εn13 + εn123 + εn132 (31)

= 3/2EnSRS. (32)

To perform a proof by induction it is necessary to show
that also the (n + 1)th order terms of both theories are
equal. To do so, the (n+ 1)th order of GHL theory is ex-
pressed in terms of the quantities occurring in SRS theory.
This can be achieved by inserting the solutions of the set
of linear equations (19) into the complete GHL energy for
the H3-quartet state

3/2EGHL = εI − ε12 − ε23 − ε13 + ε123 + ε132 (33)

and up to Mth order

M∑
n=0

3/2EnGHL =
M∑
n=0

[
εnI − εn12 − εn23 − εn13 + εn123 + εn132

]
= E0 +

[
J −K12 −K23 −K13 +K123 +K132

]
×
[
1− S12 − S23 − S13 + S123 + S132

]−1

(34)

where J , Kg, and Sg have been defined in equations (12–
14). To find the expression for the (n+ 1)th order contri-
bution to the energy of the quartet state, both sides are
first multiplied by the denominator

( M∑
n=0

3/2EnGHL

)[
1−

M∑
n=0

(Sn12 + Sn23 + Sn13)

+
M∑
n=0

(Sn123 + Sn132)
]

= E0

[
1−

M∑
n=0

(Sn12 + Sn23 + Sn13)

+
M∑
n=0

(Sn123 + Sn132)
]

+
M∑
n=0

[
Jn −Kn

12

−Kn
23 −Kn

13 +Kn
123 +Kn

132

]
. (35)

Collecting terms of (n+ 1)th order leads to

3/2En+1
GHL (1− S0

12 − S0
23 − S0

13 + S0
123 + S0

132) = Jn+1

− Kn+1
12 −Kn+1

23 −Kn+1
13 +Kn+1

123 +Kn+1
132

+ E0(−Sn+1
12 − Sn+1

23 − Sn+1
13 + Sn+1

123 + Sn+1
132 )

−
n∑
k=0

3/2EkGHL(−Sn+1−k
12 − Sn+1−k

23

− Sn+1−k
13 + Sn+1−k

123 + Sn+1−k
132 ) (36)

with the result that

3/2En+1
GHL = N0

[
Jn+1 −Kn+1

12 −Kn+1
23

−Kn+1
13 +Kn+1

123 +Kn+1
132

−
n∑
k=1

3/2EkGHL(−Sn+1−k
12 − Sn+1−k

23

− Sn+1−k
13 + Sn+1−k

123 + Sn+1−k
132 )

]
. (37)

Using the claim of the proof, which stated that for all or-
ders up to the nth the GHL term is equal to the SRS-term,
3/2EkGHL in the last line can be replaced by 3/2EkSRS for all
orders k = 1, ..., n. Thus equation (37) can be transformed
into

3/2En+1
GHL = N0

[
Jn+1 −Kn+1

12

−Kn+1
23 −Kn+1

13 +Kn+1
123 +Kn+1

132

−
n∑
k=1

3/2EkSRS(−Sn+1−k
12 − Sn+1−k

23

− Sn+1−k
13 + Sn+1−k

123 + Sn+1−k
132 )

]
(38)

= 3/2En+1
SRS (39)

and the equality also holds for the (n+ 1)th order. Thus
the contributions to the energy of the H3-quartet state in
the SRS and GHL theories are equal order by order.

One advantage of the GHL theory is that it permits
the calculation of the exchange energies by other meth-
ods, such as the surface integral method. In reference [11],
the non-additive energy terms of the quartet spin state of
H3 have been calculated up to third order. The first order
terms can be split into a polarization and an exchange
part. Since the first order polarization energy is pairwise
additive, the only non-additive term in first order is con-
tained in the exchange term which in equations (23) and
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(55) of reference [10] is given by

E1
exch(3, 3) = 〈ψ0|V̂AB

(
T̂ (23) + T̂ (13) + T̂ (123)

+T̂ (132)− S0
23 − S0

13 − S0
123 − S0

132

)
|ψ0〉

+〈ψ0|V̂BC

(
T̂ (12) + T̂ (13) + T̂ (123) + T̂ (132)

−S0
12 − S0

13 − S0
123 − S0

132

)
|ψ0〉

+〈ψ0|V̂AC

(
T̂ (12) + T̂ (23) + T̂ (123) + T̂ (132)

−S0
12 − S0

23 − S0
123 − S0

132

)
|ψ0〉. (40)

This can be expressed in terms of exchange energies as

E1
exch(3, 3) = 2ε1123(1− S0

123)

−
[
ε112(1 + S0

12)− εH2,1
12 (1 + S0

12)
]

−
[
ε123(1 + S0

23)− εH2,1
23 (1 + S0

23)
]

−
[
ε113(1 + S0

13)− εH2,1
13 (1 + S0

13)
]
. (41)

The same result can also be obtained by subtracting the
pure two-body contributions from equation (29).

5 Surface integral method (SIM)
for the calculation of exchange energies

As shown in reference [15] all exchange energies occur-
ring in the GHL-description of the H3 system, i.e. the
two-body as well as the cyclic exchange energies, can be
calculated by the surface integral method (SIM). The ex-
change energy εg0 associated with the arbitrary group el-
ement g0 6= I is given accordingly by

εg0 =

[∫
V

dv
[
F 2 − (T̂ (g0)F )2

]]−1

×
[

1
2

∫
Σ

{
F∇(9)

[
T̂ (g0)F

]
−
[
T̂ (g0)F

]
∇(9)F

}
· ds

−
∑
g 6=I,g0

εg

∫
V

dv
[
F (T̂ (g0g)F )− (T̂ (g0)F )(T̂ (g)F )

]]
.

(42)

Here V denotes a 9-dimensional partial volume which is
not equal to the full space and Σ denotes its 8-dimensional
surface. ∇(9) is an abbreviated symbol for the gradient
operators which appear in the kinetic energy operators of
the three electrons ∇(9) = (∇1,∇2,∇3). As explained in
reference [15] the partial volume V can be chosen such
that the wave function F is localized inside.

In order to compare numerical results for three-body
exchange effects with the published SAPT results for H3

[11], an expression for the non-additive exchange energy
has to be obtained using SIM. The non-additive exchange
energy basically contains the cyclic exchange energy and
the implicit three-body effects on the two-body exchange
energies. As already pointed out in reference [15] it can
be shown that for a choice of the partial volume V such
that F is localized inside, all quantities occurring in the
sum of equation (42) go to zero with at least a factor
of e−R faster than the surface integral itself. R denotes
the smallest internuclear distance for the respective nu-
clear geometry. This holds for all exchange energies. In a
forthcoming paper [19] it will be shown how to find the
implicit three-body effect from the complete surface inte-
gral expression equation (42) for the two-body exchange
energies. For product wave functions as used here the pure
two-body part is given by the second line of equation (42),
i.e. surface integral (SI) over denominator. The implicit
three-body effect is contained in the third line of equa-
tion (42), i.e. the products of partial overlap integrals with
exchange energies. Following the same scheme used in the
Appendix of reference [15], these terms can be shown to
asymptotically go to zero as e−5R which is faster by a
factor of e−3R than the surface integral (SI) itself.

Using these results a GHL non-additive exchange en-
ergy for the quartet state of H3 can be defined by simply
subtracting the pure two-body contribution from the two-
body exchange energies in the GHL result for the quartet
state equation (3)

(3/2EGHL)exch = 2ε123 −
[
ε12 − εH2

12

]
−
[
ε23 − εH2

23

]
−
[
ε13 − εH2

13

]
(43)

which can be calculated either by SIM or perturbation the-
ory. The first order contribution to this non-additive term

(3/2E1
GHL)exch = 2ε1123 −

[
ε112 − ε

H2,1
12

]
−
[
ε123 − ε

H2,1
23

]
−
[
ε113 − ε

H2,1
13

]
(44)

differs from the respective SRS-term equation (40) only
by overlap integrals that are negligible compared to one
for the nuclear geometries used here.

A comparison of the numerical results of the first order
non-additive exchange energy equation (40) of SRS theory
and the GHL term (Eq. (44)) calculated by SIM using the
zeroth order product wave function F = π−3/2 exp(−r1A−
r2B − r3C) is presented and discussed in the next section.

In summary, the complete three-body exchange effect
in H3, which consists of the cyclic exchange energy and the
effect of the presence of the third atom on the two-body
exchange energies, can asymptotically be approximated
by the surface integral for the cyclic exchange energy.
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Table 1. Comparison of the numerical results for the non-additive exchange energy in GHL theory (GHL, Eq. (43)) and twice
the surface integral without overlaps with the first order non-additive exchange energy of SRS-theory (SRS1, Eq. (40)), with
the SRS non-additive exchange energy up to second order (SRS2) [11] , and with up to third order SRS3 [11]. The nuclei form
equilateral triangles with sides of lengths R.

Eexch[Eh]

R[a0] SRS1 Eq. (40) SRS2 SRS3 GHL Eq. (43) 2× SIM without overlaps

4 −3.83× 10−3 −3.60× 10−3 −3.34× 10−3 −2.79× 10−3 −4.21 × 10−3

6 −5.90× 10−5 −5.21× 10−5 −5.03× 10−5 −5.19× 10−5 −5.70 × 10−5

7 −5.88× 10−6 −4.77× 10−6 −4.62× 10−6 −5.32× 10−6 −5.88 × 10−6

8 −5.33× 10−7 −3.71× 10−7 −3.57× 10−7 −4.89× 10−7 −5.33 × 10−7

10 −3.6× 10−9 −0.7× 10−9 −0.7× 10−9 −3.4× 10−9 −3.4× 10−9

Fig. 1. Comparison of different orders of the non-additive ex-
change energy in SRS theory with the GHL result (filled tri-
angles) calculated with SIM from equation (43) for isoceles
triangles with RAB = RBC = 6 a.u. as a function of the in-
cluded angle γB. The first order SRS contribution is denoted
by circles, and the sum of the first and second order terms by
open triangles. The stars show twice the surface integral of the
cyclic exchange energy without overlaps. Note the change in
the energy axis from linear to logarithmic scale.

6 Results

In Figure 1 and Table 1 the numerical results for the
first orders of the non-additive exchange energy of SRS
theory are compared with two different SIM-terms: (i)
the non-additive exchange energy of GHL theory equa-
tion (43), and (ii) the surface integral (SI) of the cyclic
exchange energy only (without overlaps). The GHL quan-
tities and the first order SRS term have been calcu-
lated using the same zeroth order localized wave function
F = π−3/2 exp(−r1A − r2B − r3C). Since the exchange

energies calculated by SIM cannot be given a definite per-
turbative order (due to the fact that only part of the com-
plete space is used in the calculation) the quantities (i) and
(ii) are not expected to yield the same numerical results as
the first-order non-additive exchange energy of SRS the-
ory. But since the same zeroth order product wave func-
tion was used to calculate all three terms it is expected
that the quantities exhibit a similar overall behavior in the
range of parameters studied. This is similar to the differ-
ence between the first-order exchange integral in H2 and
the exchange energy calculated with the zeroth-order lo-
calized wave function which was discussed previously (see
Ref. [17]). In H2, the first-order exchange integral is known
to behave unphysically for large separations whereas the
exchange energy is very close to what is believed to be the
exact result [25,26] although both terms are calculated
using the same zeroth-order wave function.

In Table 1 results for equilateral triangular geometry
of the nuclei ranging between R = 4 and R = 10 atomic
units are shown. Generally, all terms calculated by SIM
have smaller absolute values than the first order pertur-
bative ones. At R = 4 a.u., the absolute value of the com-
plete SIM term equation (43) is 27% below the SRS result
equation (40), and the surface integral of the cyclic ex-
change energy without overlaps is 25% greater in absolute
value. At R = 10 a.u., however, both quantities calcu-
lated by SIM are no longer distinguishable and are only
6% below the SRS result.

In Figure 1 the results for isoceles triangles with equal
sides of length of 6 a.u. and with angles γB varying be-
tween 30◦ and 180◦ are shown. All quantities except for
the surface integral without overlaps exhibit a change of
sign in the region around 120◦ and 150◦. At 30◦, (i) the ab-
solute value of the SIM term equation (43) is 31% smaller
than the SRS result, and (ii) the surface integral of the
cyclic exchange energy without overlaps is 13% greater in
absolute value. At 180◦ on the other hand, only the value
for the surface integral without overlaps has the wrong
sign, while the complete GHL term has changed sign and is
now 35% larger in absolute value than the SRS term. The
differences between the numerical results for the quanti-
ties compared in this figure are, as already pointed out,
not due to numerical problems but due to the fact that
the quantities are different by definition.
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From these results it appears that for triangular ge-
ometries of the nuclei and internuclear distances R ≥
4 a.u. the first order non-additive exchange energy for the
quartet state of H3 can be quite well approximated by
the surface integral of the cyclic exchange energy without
overlap. This was stated in reference [15] and has now been
explained by the fact that all the SIM approximations (see
Sect. 5 and Ref. [15]) hold in this region.

In Figure 1 and Table 1 higher orders of SRS theory
are also taken into account and compared with the com-
plete GHL non-additive exchange energy equation (43) in
order to show that SIM goes beyond the first order of SRS
theory. For equilateral triangular geometries of the nuclei
and internuclear distances larger than 6 a.u. the results of
GHL theory lie between the first order SRS term and the
sum of the first and second order terms, approaching the
first order term for increasing distances. At 6 a.u. GHL is
very close to the first plus second order of SRS, and even
at 4 a.u. GHL is only 17% below the total sum up to third
order of SRS theory.

For isoceles structures of the nuclei with equal inter-
nuclear distances of 6 a.u. the advantage of SIM over the
first order SRS theory is even more apparent (see Fig. 1).
Starting at 60◦, the GHL result is closer to the first plus
second order than to the first order SRS term. The change
of sign occurs for the first order between 120◦ and 150◦
whereas for all other terms already between 90◦ and 120◦.
The differences of the GHL to the first plus second order
SRS term range from 0.4% at 60◦ to 33% at 120◦ and 10%
at 180◦.

The differences between the two approaches, perturba-
tion theory and surface integral method, to calculate the
non-additive exchange energy using the same zero-order
wave functions are similar to what was found previously
for the exchange in H2. In H2, the surface integral re-
sult was nearly indistinguishable from the exact result by
Kolos and Wolniewicz [17,25,26] whereas the perturbative
result employing the same wave function exhibited an un-
physical behavior. For the non-additive exchange in H3,
no exact result is known, but the surface integral result
with the zero-order wave function seems to include contri-
butions of higher than first order. It should be pointed out
that in the surface integral approach the only approxima-
tion made is the choice of the wave function. Having cho-
sen a wave function, the surface integral expression used
for the calculations here is without further approxima-
tion directly derived from the generalized Heitler-London
equation (1). The advantage of SIM over the perturbative
approach is that the surface integral SI is easily calcu-
lated numerically, and including the partial overlap terms
provides part of the second order SRS contributions.

7 Conclusions

This paper demonstrates how the perturbation series con-
sisting of Coulomb, exchange and overlap integrals can
be used to express the Coulomb and exchange energies
occurring in GHL theory. Combining the perturbation se-
ries with the GHL theory yields an energy expression for

the quartet spin state equivalent to that of symmetrized
Rayleigh-Schrödinger perturbation theory given in [11].

It is possible to evaluate the exchange energies using
the surface integral method (SIM). SIM has the advantage
that it derives from a clear physical picture for the ex-
change process in terms of the electrons continuously trad-
ing places. For the cyclic exchange energies this method
has already been described in detail in reference [15], and
for the implicit three-body effect on the two-body ex-
change energies it will be shown in reference [19].

The long range behavior of the three-body terms en-
tering the two-body exchange energies and of the partial
overlap integrals – multiplied by two-body exchange en-
ergies in the expression for the cyclic exchange energy in
equation (42) – indicate that for large internuclear separa-
tions the surface integral for the cyclic exchange energy is
sufficient to describe the non-additive contribution to the
exchange part of the quartet spin state. The numerical
results in Figure 1 and Table 1 confirm this conclusion.

We thank K.T. Tang and J.P. Toennies for helpful discussions.
U.K. gratefully acknowledges financial support from the DFG
and T.I.S. from the Alexander-von-Humboldt foundation.

Appendix: Perturbation series for the Coulomb
and exchange energies

The solution of the system of six linear equations (19) is
given by

εI = E0 +
{
J

1
3

[2gu+ ab− cd+ 2S123(ab− cd− gu)]

−
∑
i<j

Kij [Sijgu−
1
6

(g − u)(ab− cd− gu)]

+ 2K123
1
3

[S123(2(ab− cd) + gu)

+ ab− cd− gu]
}
/N (A.1)

εij =
{
Kij

1
3

[2gu+ ab− cd+ 2S123(ab− cd− gu)]

+ J [Sijgu−
1
6

(g − u)(ab− cd− gu)]

+ (Kik +Kjk)
1
3

[S123(2(ab− cd) + gu)

+ ab− cd− gu]K123[(Sik + Sjk)gu

+
1
3

(g − u)(ab− cd− gu)]
}
/N (A.2)

εijk =
{
Kijk

1
3

[2gu+ ab− cd+ 2S123(ab− cd− gu)]

−
∑
i<j

Kij [S(ikj)(ij)gu+
1
6

(g − u)(ab− cd− gu)]

+ (J +Kijk)
1
3

[S123(2(ab− cd) + gu)

+ ab− cd− gu]
}
/N (A.3)
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where

N = gu(ab− cd)

g =
∑
g∈S3

DA(g)Sg, u =
∑
g∈S3

DB(g)Sg,

a =
∑
g∈S3

DE
11(g)Sg, b =

∑
g∈S3

DE
22(g)Sg,

c =
∑
g∈S3

DE
12(g)Sg, d =

∑
g∈S3

DE
21(g)Sg, (A.4)

and where A is the totally symmetric irreducible repre-
sentation of S3, B, the totally antisymmetric and E, the
two-dimensional irreducible representation of S3 (see [3]).

Note that this solution is general in terms of the
choice of the zeroth order Hamiltonian. For example, one
could choose Ĥ0 to be the Hamiltonian of an H2-molecule
formed by A and B and a free hydrogen atom C, i.e.
Ĥ0 = Ĥ0

A + Ĥ0
B + V̂AB + Ĥ0

C.
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